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Abstract 

Using as a starting point a deformed Clifford algebra with an involutive braid we introduce 
a natural deformation of the Cartan procedure to construct Spin(4 - h, h) groups. The method 
presented produces braided groups instead of quantum groups. We also study the induced left 
comodule structure of the spinor bialgebra. Finally, we construct the braided special orthogonal 
group and we establish the comodule homomorphism between the braided special orthogonal groups 
and the respective braided spin matrices. 0 1998 Elsevier Science B.V. 
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1. Introduction 

Since the discovery of Quantum Groups, many authors have considered the possibility of 
4 deforming the Lorentz and Poincart! groups as part of a more general program of studying 
quantum deformed field theories. There have been various approaches published in the lit- 
erature (see e.g. [l-4]). One of these approaches, due to Lukierski et al. [ 11, is based on the 
standard theory of quantum groups and a particular deformation consisting on the assump- 
tion that the space coordinates commute among themselves, while the time coordinate does 
not commute with the rest. On the other hand, the deformation used in [2] makes use of a 
Hecke braid for the space-time coordinates, which leads to a differential calculus involving 
nonlinear operators as well as an extra generator of dilations. As an alternative to avoid 
these later problems an involutive braid is used in [3]. Using as a starting point a deformed 
Clifford algebra with an involutive braid also, the authors [5] have derived generalizations to 
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2n-dimensions of the quantum PoincarC and Spin groups, which also imply a more simple y- 
differential calculus and no dilatations. A rather different approach is that followed by Majid 
[4], based on a generalization of quantum groups, the so-called ‘braided groups’, which use 
a deformed tensor product that results in a braided Hopf algebra. Introducing a braided coad- 
dition on vectors to induce the translations of the Poincark group, Majid shows that several 
q-deformed Poincari groups have the structure of a semi-direct product and coproduct 
B w SO, (1. 3), where B has a braided-group structure on the y-Minkowski space. 

The purpose of this paper is to show that the natural deformation of the classical Cartan 
approach to construct spin groups [6] produces braided spin groups. In consequence the 
y-deformed Lorentz group constructed from the braided spin group is also a braided group. 
In this article we use an involutive braiding, so our braided groups belong to a monoidal 
category of the Mac Lane type [7]. It is possible to generalize our results to the case of more 
general braidings, such as the Hecke braiding. However. in these more general cases the 
differential calculus associated to the quantum plane is compatible with the *-structure. for 
pseudo-euclidean signatures, only for nonlinear differential operators. 

The paper is organized in the following way. First, in order to make our presentation more 
self-contained. we review in Section 2 some of the basic axioms related to braided groups: 
while in Section 3 we include the most relevant aspects of the construction of a quantum 
Clifford algebra, with an involutive braid and a compatible *-structure. which we have 
developed in full detail elsewhere [5]. By requiring that the fundamental property of spinor 
transformations be preserved in the braided case, a non-commutative algebra is induced for 
the “coordinates” of the underlying Euclidean or pseudo-Euclidean spaces. From this a non- 
commutative algebra is generated for the fundamental “spinors”. In Section 4 we introduce 
the natural deformation of the Cartan procedure to construct Spin groups. The method 
presented produces the braided Spirl(4 - h. h) groups. We also study in this section the 
induced left comodule structure of the spinor bialgebra. and the consistency of the coproduct 
and coaction maps on it. Finally, Section 5 is devoted to the construction of the braided 
special orthogonal group, and to a discussion of the comodule homomorphism between 
the braided special orthogonal groups and the respective braided spin matrices derived in 
Section 4. 

2. Braided groups 

We review in this section those essential categorical concepts of the formalism of braided 
groups which we shall be needing for our discussion in latter sections. For a more detailed 
analysis of this subject we refer the reader to the material contained in [4.X,9]. 

Braided categories arose naturally from knot theory. They provide a formalism for gen- 
eralizing supersymmetry and quantum groups, with the hope of achieving a systematic 
approach to q-deforming structures in physics [4,8]. In the formalism of braided geome- 
try, vector spaces, linear maps and tensor products of linear algebras, on which most of 
the mathematics used in physics is based, are replaced by a new category which mimics. 
by axiomatization, most of the properties of the Veer category. The main axiom which is 
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changed is that in a general category with product, one postulates the existence of a natural 
transformation @, between the two functors (C, B) -+C@BandB@Cfrom91x?t+‘!1. 
Thus one has a braided tensor product algebra (.B @ .c)Pc.~. Here the braiding pC,a : 
C 8 B + B 123 C is a collection of isomorphisms that expresses the degree of commutativity 
of the algebra structure on the tensor product, i.e., we deform (a 8 c)(b @ c) = ab @ cd to 

(a C3 c> .q (b ~3 d) = uly(c 63 b)d, (1) 

where, the braiding ly satisfies the braid relation 

(id @ @)(P @ id)(id @I P) = (P @ id)(id 8 w)(U 8 id). (2) 

More formally, let 91 be an associative algebra with unit 1 E ‘8, and with multiplication 
map m : ?I @I ?I --f ?I. We assume that 91 is endowed with a structure of a coalgebra, given 
by a coproduct 4 : !‘I + ?1@ \‘I and a counit E : 91 -+ C. Furthermore there exists a bijective 
linear map K: YI -+ ?I. We then have the following: 

Definition. A braided group or braided Hopf algebra, is a pair 6 = (?I, (4, e, K, P}) 

satisfying the commutative diagrams 

(3) 

(4) 

(5) 

(6) 

together with the antipode axiom 

l~=m(id~K)~=m(~~id)~, (7) 

and the multiplicativity axiom of the coproduct, @(ub) = @(u)d(b). Relations (3) and (4) 
ensure that q defines an associative algebra structure on YI 8 Vf, such that 1 @ 1 is the unit 
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element. Also, instead of the usual multiplication anti-homomorphism of the antipode. we 
have 

K(d) = m@(K ‘8 K)(U @I b). 

and instead of the usual anti-cohomomorphism we need 

(8) 

@oK=(K@K)oP$. (9) 

From here on, we shall denote by BBB the braided product with tensor multiplication given 

by (I). 
Some braided groups have, in addition, a quasi-triangular structure if there exists a uni- 

versal braid matrix, R = xi ai @ #I; E B @ B, such that 

n(@(u))R = R+(a). (4 @ Z)R = R13Rz3, (I 8 (P)R = R’3R’2. (IO) 

where R’” = a; @ 1 @ pi, R23 = 1 63 a; ~8 b;, R” =c~;@D;@l E B@BBE3,with 
TI : B @ B + B @ B the standard transposition. 

From the above axioms it is possible to obtain the quantum Yang-Baxter equation in the 
form R’* RI3 Rz3 = R23 RI3 R12. Quantum groups are a special case of the braided groups 
when the quasi-triangular structure is satisfied, and the tensor product is the usual one, i.e.. 
when ‘P and rr are the same in the preceding relations. 

Following [9, lo] we introduce an additional *-structure on the braided Hopf algebra, as 
an involutive anti-multiplicative map * : 3 + ?I, compatible with the coproduct. Then we 
have: 

Definition. An involutive antilinear map * : “1 + ?L is called a *-structure on ($5 iff 
(i) *m = m7r(* @ *), 

(ii) #* = (* @3 *)rrV’$. 

In this way (PI, *) becomes a *-algebra. 

3. Clifford, space-time, and spinor algebras 

A general theory of deformed Clifford algebras was developed in [ 111, based on a quantum 
generalization of Cartan’s theory of spinors. By particularizing this theory to the case of 
multiparametric involutive braids, we obtained in [5] that the generators of the deformed 
Clifford algebra Cl(s, W) satisfy the relations: 

H(ei)H(ej) + C rijk’H(ek)H(er) = 0. 
k.1 

H(e:)H(ej) + C T;jk’H(eL)H(ei) = 0, 
k.1 

H(e~)H(ej) + c ?jjk’H(ek)H(e;) = 6;jE. 
k.1 

(11) 
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H(ei)H($) + C fijklH(eb)H(e,) = qij E, 
k-1 

where W = V@V is the underlying 2v-dimensional (pseudo)-Euclidean space, V and 
its dual V’ are isotropic subspaces, both of dimension v, and {ei ), (ej) are their respective 
bases. 

The matrix elements rijk’ and ?ijk’ in (11) are determined by the automorphisms 

r(ei C3 ej) = F,'(ej 8 f?i), i < j, 

t(ei @ei)=ei @ei, (12) 

t(ei 8 ej) =Pij(ej @ ei), i > j, 

f(e: @ ej)= /.Lij(ej @3 ei), i < j, 

t(e: @ei)=ei Beei, (13) 

f(ei @ ej)= /_Lv'(ej @ ej), i > j, 

such that 

pij = ILJQ’ = eXp(i&), liklv-h-l fori,j(v-h, 

liklh-1 fori,j5v-h+l, (14) 

pij = p,;’ = pk E [w, llksv-h for 
i(v-h, jlv-hfl, 
j’v-h, i>v-h+l. 

Requiring that the fundamental property of spinor transformations be preserved in the quan- 
tum case, a non-commutative algebra A was obtained for the coordinates of the underlying 
pseudo-Euclidean spaces given by 

,QJ = mS(x’ g Xj) = /_l,ijXjxi, 

x”xJ = mt(x’i 8 xj) = p;lxjx’i, 

,$x’J = mt(x’ @ X’J) = p,‘&, 
(15) 

x”x’J = mf(xfi 8 x’.i) = p. .xfjxfi 
‘J 

This algebra has a consistent anti-multiplicative *-structure, inherited from the Clifford 
algebra, such that 

1 . 
(* @ *)7rR = R(* @ *)n. (lo) 

In the above, rr is the standard permutation operator, and i is a homomorphism j? : d@d -+ 
A C~J A which satisfies the braid relation (2). In block matrix notation it is given by 

k= i 

s 0 0 0 

0 r 0 0 

0 0 ’ t 0 

0 0 0 t i 

(17) 

where r and 5 are the braid isomorphisms defined in ( 12) and ( 13). 
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The quotient algebra di = d/Ii, where Zi is the two-sided ideal in A generated 

by (1 - ~)(x@x), is an algebra of functions on the quantum n-dimensional vector space 
associated with the matrix k. Furthermore, with a left coaction map 6 : di -+ IR@di. 
together with the requirement of invariance of the fundamental quadric (x, x), the algebra 
d, acquires a comodule structure for the quantum matrix algebra 7~ of the SO, (2~ -12, h) 
groups (cf. [5]). 

3. I. q-Spinors 

Recalling now that, in analogy with the classical case, the q-Clifford product is uniquely 
determined by the relations 

H, I = e;, Hi . ej = e; A e,i, H: ej = le’ej = ei(ej) = Sij. (18) , 

where the wedge product involves the appropriate braiding given in Eq. ( 12). we can define 
a q-spinor by 

< = 2 c (k’-k~Hk, . . Hk,, . 1. 
p=O k, <...<K,, 

(19) 

Here the 2” components < kl”‘k~ are the generators of a non-commutative free algebra 2, 

and the symbol xk, <...<k,, is to be interpreted as no sum in the case p = 0, so ckl”‘kfJ = 6” 

when p = 0. 

Note that in the classical limit pij -+ 1, the above expression reduces to the usual 
definition of a spinor as an element in the graded Grassmann algebra of the basis vectors in 
the corresponding (pseudo)-Euclidean space to which the spinor is associated. 

We can introduce a bilinear inner product on the q-spinor vector spaces S spanned by 
the generators of Z by first defining the involutive and anti-multiplicative T-transpose 
operation, [ E S + tT E S’, which maps linearly spinors in S to spinors in the dual space 
S’. This operation is uniquely defined by its action on the generators of the Clifford algebra: 

(H; 1)’ = 1’ . Hi’, (HiHj ’ l)T = 1’ ’ Hi. H:. (30) 

Thus the T-transpose operation maps Clifford product action from the left to Clifford 
product action from the right, and 

tT zz 2 c (kl-‘KP @ 1’ H;,> . . . H;, . (21) 
p=O kl <...<k,, 

Note that by virtue of (18) and (20) the elements ((Hk, . . . Hk,, . 1)’ = 1’ . Hi,, HL, ) 

form a basis reciprocal to [Hk, . Hk,, I), kl < . . < k,, under the scalar product 

[I’ . H;., . . H;, , ffk, . . . ffkp . I]= l’.H&-.H;, .Hk,...Hk,, . 1 = l’(l)= 1. 

(22) 
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This allows us to define a scalar a fundamental spinor bilinear, as in [5], by means of 

($* rl) = ET, C. VI. (23) 

where C is a spinor metric operator given by 

C&-l) (~-P)(~-p+l)/2 c (- 1)““’ ~7c(l)-.7r(p) (PL) 
p=o 7lCS” 

ml)<...<n(p) 
n(p+ll<..-a(,,, 

x H*(l)... fh(p)(ffTT(p+l) . . . e-r(“)) T 
(24) 

with I(n) = length of the permutation n, and 

&r(l)...,(,) = [P(n(l)rr(v)) . . ‘P(7r(l)n(p+l)) . . Il(rr(p)n(v)) . . &7(p,7r(p+l))l”2~ 
U,(l)...,(,) = a0 = 1, (25) 

and the symbol ( ) denotes pair ordering of indices so that the first one is lower than the 
second. It is easy to verify from (24) that 

CT = (_l)v(u+‘)Pc. (26) 

Making use of (24) it can be readily shown that (23) may be written as 

(& rl) = ~(_l)~u-PN-P+l~i2 

p=o 

X c (-l)‘(“) @T(l)...Jr(,)~ n(l)...n(p)Dir(p+l)...rr(v) (27) 
n(l)<-.<nlp) 

n(p+l,<...<n(“, 

Now, taking as a basis the 2” generators of the Clifford algebra ( 1, Hk, . . Hk,, . 1 I kl < 
k2... < k,,p = 1,2 ,..., u} ordered in such a way that those with an even number of 
indices and in an increasing degree sequence come first, followed by those elements with 
an odd number of indices also in an increasing degree sequence, we can write a spinor as 
a column vector where the first 2”-’ entries correspond to a semi-spinor of the first type 
(which we shall denote by qp), while the last 2”-’ entries correspond to a semi-spinor of the 
second type (which we shall denote by @), in Cartan’s terminology. 

It is evident from (27) that the fundamental spinor bilinear involves products of compo- 
nents of semi-spinors of the same type if LJ = even while if u = odd the products are of 
semi-spinors of the two different types. 

Based on the fact that the total number, 2 2” , of products of the components of two spinors 
equals the sum of the degrees of irreducible tensors found, a classical theorem in spinor 
calculus (cf. [6]) states that a spinor bilinear is completely reducible with respect to the 
group of rotations and reversals and decomposes into a scalar, a vector, a bivector, . . ., an 
n-vector. 

We shall make use of this theorem to obtain commutation relations for the free algebra S 
of q-spinors. Thus, guided by the fact that in the limit w + 1 we must obtain the classical 
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expression for the components of a vector, written as a spinor bilinear formed with the 
semi-spinor components of the two spinors 6, { we take as an ansatz, for u = 2 (which is 
the case we shall be considering in this paper), and for an isotropic basis, 

X’ = ;(I&? + lj&?), (28) 

X 
II 

= -;c$*$ + $*(A (29) 

x2 zz &&* + l&2), (30) 

X 
0 

= ;pu(q’@’ + $‘p’). (31) 

Furthermore, from (24) and (25) we have that 

C = HI Hz - &HI H; + &iHzH; - H;H;, (32) 

and from ( 19) making use of the spinor ordering described above, we can write 

c =v’ ++‘H, +$2H+(p2H,H2 (33) 

and 

[‘CC = &j’ - fi?+Q@ + &Q&J - (p’(p2. (34) 

Thus 

and 

(H(x)OT = (~‘cp’)~ 

H2 1 - ~,‘*@*H1 1 - ~‘6’ + Px2~’ 
G 

’ . H; + (x1 I)*)~ 1’ H; . H; + (x2&T 1’ H; 

(35) 

+ (~*+‘)~l H; . H; + (.x”+‘)~ 1’ + (x”P*)~ I . H; 

+ (.I!*@*)~ 1’ - -!- (x’~v*)~ 1’ H;. 
G 

(36) 

Denoting by P the braid operator between the coordinates and the spinor components, we 
have 

(XWT = mP(x(’ gap). (37) 

We now require that 

(H(x)t, H(x)& = (t,h (38) 

as in the classical case, and we further make use of (35) (36) and (34), together with the 
fundamental property of spinor transformations 

H(x)H(x) = (x, ME, (39) 
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where 

(x, x) = X”X + J2x2. 

It follows then that 

.‘q’ = mP(x’ @I (0’) = -1_,‘X’ 
G ( 

.‘q2 = r&(x’ @ ti2) = &i$2X1, 

X%+0’ = mP(x2 @ cp’) = &i&2, ‘x2 ( 

(40) 

(41) 

x”$? = 
1 

P&(x” @ q2) = -&X”. X”$’ = mP(x” @ @‘) = 2/TLljP’lx”, 

_&2 = rnly(x’2 @9 402) = &i&‘2, X’2$2 = rnP(x’2 8 l/P) = +‘2. 

Using (28)-(31) in the above relations, it is straightforward to show that 

JP** = $2*‘, (P2e2 = &+2P2* 
1 

p21+k’ = -$‘p2. (42) 

In this way the spinor algebra 5 becomes a factor algebra 2 B = s/IB with IB being the 
two-sided ideal generated by (42). In the following section we shall show that the generators 
of this factor algebra acquire the structure of a comodule vector space for the braided spin 

In the classical Cartan spinor theory, the action of the operator H(X) = Xi”= 1 (x’ Hi + 

xii H:) on spinors, with x a unit vector, corresponds to a reflection in the hyperplane perpen- 
dicular to x. A proper rotation on spinors then corresponds to an even product of Clifford 
operators. 

group. 

4. Braided spin groups 

Thus, because of the isomorphism between C/(W) and H(W), the Pin(2u) group, as- 
sociated with an underlying 2v-dimensional (pseudo)-Euclidean space, is given by the set 
Pen = {S E Cl(W), dim(W) = 2~1s = H(xI)... Hi, k = 1,. . . ,2u, Xi = 
xyc W, [Xi 1 = 1). Taking the even part of the Clifford algebra we have Spin(2u) = (s E 
Pin(2u), with s = H(xl) . . H(.Q)]. 

Consider now the element s = H (XI ) . H (x2k). Since the Clifford algebra is associa- 
tive, we can group the above product in pairs so that 

s = (HI.. . (H(~~~-I)H(~Ix)). 

But each pair B(xi, Xi+‘), with i odd, has matrix representation 

E SL(2”_‘, C)xSL(2~-1, C). 
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Hence s has the matrix representation 

s= niBI 

c 

O 
0 TIi B; ) 

E SL(2+‘, @)x sL(2”-‘. C). 

This is due to the fact that det(B: . . Bi) = ni det( Bj) = 1, for j = 1, 2. 
Consequently in the classical case, the quadratic algebra of the Clifford generators is the 

essential building block for the Spin groups, and is the basis of Cartan’s construction of 
the double covering of the (pseudo)-orthogonal groups. 

It is the purpose of this section to show that a similar approach may be followed to obtain 
the braided Spin(4 - h, h) groups, as a braided Hopf algebra of polynomial functions in 
the generators made out of the non-commutative entries of matrix representations of the 
dyadic operators B(x; , x,+1 ). The extension of this procedure to higher-dimensional spaces 
remains to be investigated. 

We thus begin by considering the operator B(x. y) = H(x)H(y), where the components 

ix’ . x7, x”. d2} and [v’, _v2, y”. y”] (in an isotropic basis) are no longer commutative, 
i.e., we shall assume that the coordinates of the unit vectors x and y are required to satisfy 
the commutation relations (15). extended to apply to conrdinates of different vectors also. 
Note that we can still assume 1x1 = \yI = 1, because these products are central to Ai. We 
shall denote by U the algebra generated by the matrix elements of the operator B(x. y). 

As we mentioned at the end of the preceding section, we can give to the vector space S 
of the generators of the factor algebra Sg a comodule structure by introducing the coaction 
map 6 : S -+ BBS, where B(x, y) acts on S through Clifford multiplication. Thus, 

2 2 
B(X,'f)&t=C C C [~‘?.‘~~~“‘.~“HiHjHk,...Hk,,.l 

p=O i.j=l kl c...<k,, 

+x_“!,i @ (h~-‘k~~ff;HjHk, . . Hk,, 1 

+xiy’j @ t_k’-.klgH,H;Hk, . . Hk,, 1 

+_x”y’.j B +-X 1’ H,%;& . Hk,, 11. (43) 

Taking now as a basis the four elements ( 1, Hk, Hk2 1 kl < k?], and applying the Cartan 
ordering procedure in terms of semi-spinors of the first type followed by semi-spinors of the 
second type, we can recombine the coefficients in (43) (making use of our y-Clifford algebra) 
as new factors in such a basis. Thus we can rewrite (43) as c”,=, b”@ 8 <“, a. @ = I, . ,4. 

where the first two entries in the column <” correspond to a semi-spinor of the first type. 
while the last two entries correspond to a semi-spinor of the second type. The rearranged 
coefficients in (43) yield the entries bUfi of the block-diagonal matrix representation of 
B(x, y), from which the free algebra l? of non-commutative polynomials is generated. 
Furthermore, the algebra (15) of the “coordinates” which occur in 6”@, determines the 
commutation relations for the latter. 

Thus, 
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where 

and the entries of the block-diagonal matrix (bUB), are given by: 

b’, = x’ly’ + d2y2, b12 = #y” - P-*X"Y'2~ 

b: = .‘y2 - /1.x2y1, b22 = x’y” + x2yf2, 

b33 = x’y” + d2y2, b; =x1y’2 - p-Yyl, 

b43 = x2y” - &‘y2, b; = x’ly’ + .x~Y’~, 

b’j+2 = 0, b’;2 = 0, i,j = 1,2. 

(45) 

(46) 

Moreover, making use of (15), it immediately follows that 

b’2b34 = p2b”4b12, b’2b43 = p-2b43b’2, 
b2,b; = p-2b34b21, 24 2 b2,b43=p b3b,, (47) 

[bij, b’,] = 0, [bi;j2, bfm+:2] = 0, i, j,l,m = 1,2. 

Note from the above that elements in the same 2 x 2 block matrix commute with each 
other. Also note that the matrix components b aB inherit the *-structure for the coordinates 
given by (cf. [5]) 

(xi)* = X’i, i = 1,...,2-h, (x”)* =,I?, i = I,..., 2-h, 
(xi)* = xi, i=2-h+1,...,2, (_.p)* = x’i, i=2-h+1,...,2. (48) 

Explicitly, for h = 1 we have /.L E R, and 

(b’,)* = b33, (b:)* = -b34, (b’,)* = -b43, (b22)* = b:; (49) 

and for h = 0 

pcL*=p-1, (50) 
(b’,)* = b2*, (b:)* = -b’,, (b3,)* = b$, (b;)* = -b$ (51) 

It is easy to verify that this induced * -structure is compatible with (47), and that for 
Minkowski space (h = l), it interchanges the matrix elements from the upper block with 
those from the lower block; while for Euclidean space (h = 0) the *-operation is closed 
within each block and corresponds to the matrix representation of the group SU(2). 

As a next step we need to show that the algebra B, generated by the matrix elements b>, 
has a natural braided bialgebra structure. With this purpose let Zyr be the two-sided ideal of 
B generated by (47) (note that the braid operator P is induced by the previously obtained 
braid operator for the cnordinates). The quotient algebra B~c, = B/I* has the structure 
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of a braided group, as defined in Section 2. Indeed. the coalgebra structure is given by a 
coproduct and counit defined by 

#W/+) = bUY @ b’B> t(baB) = 8;. (52) 

Because of the braided algebra structure, these maps can be seen to be compatible with 
(47). after recalling that 

@tab) = $(a)@(b). e(ab) = t(ak(b) (53) 

with 

(u 8 c)(b @ d) = u9(c @ b)d. (54) 

It is easy to verify that P = V’ and also that the functoriality relations (3)-(6) and the 
braid relation (2), given in Section 2, are satisfied. Thus 9 is an involutive braid operator. 
Finally, the antipode is clearly given by B(y. x). 

So far we have obtained the braided group related to a deformation of the group G L (4. C). 
In fact, as we shall show next, our braided group is smaller and corresponds to a subgroup 
of the braided group SL(4, C). To be more precise. it is the deformed SL(2, @) x SL(2, C) 
group. 

4.1. The braided determinant qf the group 

Since the matrix (b;) is block diagonal, the coaction map S on the spinor space can be 
decomposed into separate coactions on the semi-spinors of the first and second types. Thus. 

with 

i = 1,2. 

82(@) =- c b’:,?2 @ $‘, i = 1.2. 
(56) 

j=l,2 

Here Si is the vector space generated by the spinorial components (qpi}i=i,2; and S2 is the 
vector space generated by {@)i,l~; while &v, = Bi /I*, , with Bt being the algebra 
generated by the matrix elements (b’j)iIi’i and IP, is the two-sided ideal generated by the 

commutation relations which correspond to the upper block (bij))zi’t. In analogy L?e,, = 

&/lq is the quotient algebra related to the lower block (bij+f-2)~~~;~ and its commutation 
relations. Note, in particular, that in our case rPi = @2 = rr. 

By requiring multiplicativity, we now extend the coaction maps & to the braided exterior 
algebras of S; , by means of 
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In particular we have 

ap(ti) = Ai @ lit 

where {i is the volume element in SLfi2, and Ai E BP; is the braided determinant. 

By direct calculation it is easy to show that 

(58) 

AJ = h’ b2 - b’ b2 12 215 A2 = b” b4 - b3 b4 3 4 4 3' 

Furthermore, since x and y are unit vectors, i.e., (x, x) = x’lx’ + x12x2 = 1, (Y, Y) = 
y” y ’ + y’fy2 = 1, it turns out. making use of (46), that each matrix block has quantum 

determinant equal to 1: 

Al = A2 = 1. (60) 

It also follows from (58) and (60), that the extension of the coaction map 6 to the total 
braided algebra S” results in 

J”(T1 A 52) = $%I) pa; = (AI @Cl> A (42 @52) = 1 @(II A C22). (61) 

that is A(b$) = 1. Consequently our braided group corresponds to a deformation of the 
group SL(4, C). Note that even though each block matrix has classical characteristics (its 
elements commute and it has a classical determinant), it cannot be considered as a “classical” 
SL(2, C), because its matrix entries belong to a non-commutative braided Hopf algebra, 
whereby the entries belonging to one block do not commute with the entries belonging to 
the other block. 

Another interesting property of our braided group is that it leaves invariant the funda- 
mental quadric (x, x). This result is an immediate consequence of (38) and the fact that, due 
to (28)-(3 1) and their commutation relations (15), the fundamental quadric can be written 
as 

(x,x) = -$w, $)(cp, cp). (62) 

4.2. &product and coaction maps on B 

Recall that in (46) we have derived expressions for the generators of the Hopf algebra 
B, in terms of the coordinates of the underlying (pseudo)-Euclidean space. Note, however, 
that even though these particular elements of the quadratic algebra of the coordinates form a 
bialgebra, this does not imply that the vector algebra of the coordinates itself is a bialgebra. 
In fact no such a structure can be imposed on the coordinates that would be compatible with 
the coproduct on B in our construction. 

On the other hand these coordinates, which represent in the non-deformed case unit vec- 
tors defining normal hyperplanes of reflection can, by (28)-(31), be expressed as spinor 
bilinears. Thus the elements b> of the braided matrix can, in turn, be expressed as polyno- 
mial functions of the spinor algebra 5. Consequently, the bus should also have the structure 
of a comodule and admit a coaction map, induced from the coaction map on the spinor 
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space. Furthermore this induced map should be compatible with the coproduct map already 
existent in the bialgebra structure of B. It is the purpose of this section to display the rela- 
tions between the coproduct and coaction on Z?, as well as to determine the braided group 
of which the generators bUD are a comodule. 

To begin. we make use of (46) (42). (28)-(31) and (34) to write 

(63) 

In the above expressions @, 4 denote the second-type semi-spinors associated with the 
vector x, and cp, (p the first-type semi-spinors also associated with x; while <, i. and n, t 
denote the second- and first-type semi-spinors associated with the vector y, respectively. 

Note in addition, that taking x and y to be space-like in the classical limit, we have the 
following extra constraint relations for the spinor algebra: 

(x.x) = -;cs, $)(cp.cp) = 1. (y. y) = -$(L ;)(n. 6) = 1. (64) 

Recalling now from (38) in Section 3 that the spinor bilinear product is invariant under 
the coaction map, it becomes evident that the elements b’,. i. j = 1, 2, are semi-spinor 

bilinears of the first-type, while the elements b22’+, , i, j = I, 2. are semi-spinor bilinears 
of the second-type. This in turn implies that the generators of the algebra I3 are a comodule 
vector space of the block-diagonal braided group 

C 

@‘/2.0’ x @l/2.0) 0 

0 @“.I/” x @O.l/” ’ 
> 

(65) 

where 2) are representations of SL(2. C). Note, however, that here the matrix elements of 
D(‘i7-~o) do not commute with the elements of D(‘.““. 

More specifically, using (56) and (63). we have 

Stb’, 1 = b’2b22@b’l - b’2b2,@b’2 + b’,b’@bl, - b’, b’,@b’2. 

S(b:) = b’,b’,@b2, + b’,b’,@b’2 - b’2b12@b’, - b’,b’2@b’,, 

S(b2,) = b2,b2,@b2, - b2,b2,@b2, + b2, b2y8b’, - b’, b’, @b’2. 

S(b22) = bz2b’,@b2, + b2,b’,@b’2 - b’2b22@b2, - b21b’2@b’, . 

S(b-?,, = b3,b4,@b4, - b34b43@b44 + b3,b4,@b3, - b3,b‘$b34, 

6(bj4) = b3,b3,@b4, + b_l?b3@b$ - b3,b3,@btj - b33b”4@b33. 

(66) 
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S(b4,) = b44b\@b43 - b4,b4,@b: + b43b‘&b33 - b43b43@b34, 

S(b4,) = b;b33@b$ + b4,b3,@b3, - b3,b4,@b4, - b‘?.b$8b33. 

Using the symplectic spinor metric 

wr2 = w ‘2 = -1 f&T4 = (w34)_’ = -A (67) 

Eqs. (66) can be summarized in the form 

S(b;) = bffYb;@by,. (68) 

This last expression exhibits explicitly the induced comodule structure on the generators 
of the bialgebra t3, together with the fact that the indices in bUP transform as spinor indices. 

As a final remark observe that using the coproduct structure in B, we can rewrite Eqs. (66) 
as 

Nb’,) = b22#(b’,) - b’&(b’,). 

Nb:) = b’,@(b:) - b:#(b’,), 

J(b:) =b22$(b2,) - b21@(b22), 

S(b2,) = b’,4(b2,) - b:+(b2,), 

S(b3,) = b:ti(b33) - b43$@34), 

S(b3,) = b33$6’J - b34@(b33), 

Vb4,) = b44@(b:3) - b4,6(b!_& 

S(b4,) = b33@(b‘$ - b:9(b43). 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 

These are our desired relations between the coaction and the coproduct maps on B. 

4.3. The braided Spin(4 - h, h) groups from the braided &group 

To conclude this section, we now show how the braided spin group &pin (4 -h, h), given 
by the set (S E C1(W, t), dim(W) = 41 s = 1, B(x~, x2), B(x~, x~)B(x~, x4), xi = XT E 
W, jxi I = I}, is constructed from the braided group BP derived above. The procedure for 
this construction is contained in the following: 

Proposition. The algebra of Spin (4 - h, h) belongs to the braided group BP with matrix 
representation 

ni B; 0 
0 ni Bi > 

E SL(2, C)5SL(2, C), 

with commutation relations for the entries given by (47), and representation space S = 
Sl @ S2, where dim Sl = dim S2 = 2. 

In the above we have used the symbol x to emphasize the fact that between the matrix 
entries of the first and second element of the Cartesian product, there exist non-trivial 
commutation relations. 
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Proo$ We already have shown that each pair B(x;, Xi+!) belongs to a braided group with 
matrix representation 

of SL(2, C)ESL(2, C). 

Hence s has a matrix representation 

s= rIA ( 0 
0 II B; 1 of SL(2. C)xSL(2, C). 

The above is due to the already mentioned fact that each block behaves classically and. 
therefore, det( Bj’ Bf . . . Bj) = ni det(Bj) = 1, for j = 1,2. In addition, it can be shown 
by induction that the commutation relations for the above product matrix are those given 
by (47). Finally observe that the matrix elements .r> are polynomials in the generators VP. 
Consequently they belong to the braided Hopf algebra .13*. cl 

Note in fact that the braided groups Spin(4- h. h) actually have the ordinary group prop- 
erties. Indeed, it is a simple matter to verify that they satisfy the group closure relation and 
alsoforanygeneratingmatrixofSpin(4-h,h),.s-’ = I, B(xz,xi), B(xJ,x~)B(x~,xI). 

In the classical case S3 x S3 z Spin(4 - h, h), and therefore every element s E 
Spin(4 - h, h) is associated with a transformation B(x. y). where (x, x) = (y, y) = 1. 
However, for the case p # I, where we lack the concept of quatemions to be able to define 
the 2 to 1 homomorphism between S’ x S” and SO (4 - h, k). and we also lack the concept 
of a unique double covering of SO(4 - h, h) by Spin(4 - h, h), it becomes difficult to 
conclude that S” x S3 and Spin(4 - h, h) are isomorphic. 

5. Relation between the braided spin and the orthogonal groups 

5.1. The SO(4 - h, h) braided groups 

As we have shown in Section 4, the coordinates of the underlying (pseudo)-Euclidean 
space can be expressed as spinor bivectors. Thus the coaction map on S induces a coaction 
map on the generators of the algebra di, given by 6 : (x”) H t> 1231 xp. 

Applying the respective coactions on both sides of (28)-(3 1) and comparing coefficients. 
we get 

I’ =b3b2 
t; = b;$ 

t2 = b4 b’ 

: 
4 23 

,2’ = b‘?$ 
2 4 27 

t ,, = -p-‘b$b’,, 2 t ,’ = -&b44b2,, 
t;, = b33b2,, t;, = b43b2,. 

t’; = -,c1b43b’2, t2’ = b3 b’ (77) 

:r 
3 23 

t; = -pb44b’2, t 2 = p2b3,b:, 
I’ 

t I’ 
= b4b’ 

4 13 t2’ ,, = -pb3,b’, , 
1’ t 2, = -p--b43b’,, t”;, = b33b’,. 
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In this way we obtain a relation between the matrix T = (r>) and the braided matrix B, 
discussed in Section 4, via the product BI @B2 E SL(2. C)@.SL(2, C); where B1 and B2 
represent the upper and lower blocks of the whole block-diagonal matrix B. 

Note that Bl and B2 are, respectively, elements of the braided Hopf algebras &, and L?eZ, 
with a matrix representation given by SL(2, C). Taking into account the braid operator P, 
defined by relations (47), it follows that these Hopf algebras belong to a braided monoidal 
category. It also follows (cf. [S]) that the product &v, @?p, is again a braided Hopf algebra, 
constructed on ,13~,, @ .13~>, with a product (.a*, @ .uPq )@B, ,ZQ, , and belonging to the same 
category. Furthermore in our specific case this product inherits the structure of a bialgebra 
from t?~ . 

In conclusion, &,, @3p1 is a braided group, with matrix representation 

B@& E SL(2, C)eSL(2, a=) 

and representation space W = St ~$5, coacting on the coordinates xv according to 

6(P) = t; 8.8. (78) 

We next analyze the *-structure of the algebra 7~ inherited from the one defined on the 
generators of the braided Spin group. Specifically for the Minkowski case and an isotropic 
basis, this follows from (49). Thus 

(t’,)* = ty,, (t\)* = /A:‘, (79) 

(t’,,)* = t’,‘, (t&J* = l*t;,, (80) 

(t2,)* = pt:,, (t;)* = t$, (81) 

(t;,)* = t2,,, (tY)* = p-y,, (82) 

(t2;)* = tZ?‘, (t$)* = t$,. (83) 

It can be verified that the *-structure given by the above relations satisfies the conditions: 

*mc?(x”) = mn(* 63 *)S(x”), qw;)*) = (* 63 *>n9-‘$4b;h 

and is therefore compatible with the coaction and coproduct maps. 
To complete our construction, in the following we obtain explicit expressions for the 

quantum determinant and antipode of the matrix T. 

5.2. Braided determinant and antipode of T 

Let W denote the vector space generated by the coordinates xU, and 7 the non- 
commutative algebra generated by the matrix elements t>. Also let 6” : WA + 7 @ WA 
be the natural multiplicative extension of the coaction map 6 given by (78). In particular, 
we have 

a’.‘(w) = A @CO, (84) 
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where w is the volume element in WA4. and A E I is the braided determinant. 
comodule properties we have 

4(A) = A @ A, c(A) = I. 

63 

From the 

Assuming that WA is an immersion in W@, and making use of the braid operator I?, we 
have 

where (s”) E W A3 is a basis for this space. 
Since as vector spaces WA3 2 W (their dimensions are the same), we can write 

S^(s”) = c i”s @ ,b, (86) 
B 

where (f:) E M4(T), with ? being the algebra obtained from adding to 7 the inverse of 
A. It can be seen from the coproduct and counit relations for the determinant, that 4 and c 
admit natural extensions to f given by 4(i>) = C, f; @I r$, I = 6;. 

Consider now the scalar matrix S given by 

.P A 2 = SUB w. 

By direct calculation we obtain 

s= [; -i-i ;:, aI]. 

(87) 

(88) 

Thus applying relations (84)-(87) we arrive at 

Al = @)‘T. (89) 

AI = TSS(f)TS-‘. (90) 

where P symbolizes the braidoperatorbetween the matrix elements of T and the coordinates 
.P, while TT is the ordinary matrix transpose. 

From (89) and (90) it follows that the antipode K(T) E M4(1) is given by 

K(T) = A-“P(f)T = SQ@)~S-‘A-‘. (91) 

So far we have made no use of the construction of the matrix T as a function of B. If 
we use (84) to calculate the determinant explicitly, we get A @ w = S^(w) = 6^(A4(x’ 63 
x2 @X” 8.X”)) = =&&l) ‘(K)cr,(6(~‘) @$ 6(x*) @ 6(s”) @6(x’*)). where A4 is the 
anti-symmetrizer in W @4 Carrying out the coaction maps and comparing terms on both . 
sides of the resulting equation, yields 
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A=t’t*t”t*’ 
t ! , , t , 

1 2 I’ 2’ - t’$,t’,,t2,, - t’&t’,,t~ + ty,2, t;, 
I I I 2 I’ 2’ 

- t:t;,tl,,t; + t ,,t *t *,t , - p t * ‘,,t2,,t’y’ + /_-*ty,Q’~ 

+ty’t:‘,t;,t;‘, + p-*+;t’,‘t*,‘, + ~“t’,,t;,t’,‘t2; 1 2 1’2’ 
- t yt ‘J , t 2 

+ t\,t2,t’,‘,t2; - p-*ty’t;ty, 
I I 

- t”t2,t;,t;, + /_L -%‘&,t’,‘,t~ 

-~-*tI,ty;,t2; + t”t2,,ty”, 

I2 1’2’ 1 2 I’ 2’ -t,t,‘t*t*‘+t,tl’t2’t* 
I I 

t’&t,, t*,, 
I , 

- - t’,,t$t’, 2, 

+ ~-*t’,‘t:t~t2;, - p-*t’,,t:t;:t2;. (92) 

Finally writing the above relation in terms of 6;, we obtain 

A = (A,)* = 1. (93) 

This result establishes the fact that the braided group T preserves the volume element 
(since 6”(w) = I @I w) and, consequently, it can be identified with a deformation of the 
group SL(4, C). Also note that when substituting (93) in (91) shows that the inverse of the 
matrix T is its transpose, with some deformation given by the braid P. This suggests that 
T is related to a deformation of S 0 (4 - h, h). To establish this fact, we have only to verify 
that T leaves invariant the fundamental quadric of the space W. But we already have shown 
in Section 4 that this fundamental quadric is invariant under the coaction (44) of B. Thus, 
since T is determined by the compatibility relations (77) between the coaction maps for 
both braided groups, it follows that the fundamental quadric (x, x) is invariant under the 
coaction (78) of T. 

Hence 

(x, x) = X”XbM@ = 6((x, x)) = (t”y 8 xY)(tJ: c3 x*)M@, 

where 

0 12 

Iv= I*0 ( > 
is the metric for the space W. Using now the braiding 

92; = *~~~pop tfy, (94) 

we get 

Eq. (95) is the equivalent of orthogonality for our braided T-group. 
To sum up, the algebra 7 generated by the matrix elements t> determined by relations 

(77) satisfies the axioms of a braided group with an antipode which turns out to be its braided 
transpose and a determinant which is equal to 1. We thus have the following: 

Definition. The braided special orthogonal group m(4 - h, h) is the braided Hopf algebra 
I = &, c@, , with a *-structure induced by the one for the coordinates, given in (53). 
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Note that in our particular case 7 is actually also a group. Indeed. let T, T’ E 7, then 
T T’ = (BIB; 63 B~B;)@B~,B,. But the matrix elements of BIB; and BzBi satisfy the 
commutation relations (47) which in turn implies that T . T’ E 7. 

We thus have found a morphism which relates SJ(4 - h. h) to the braided group &in 
and, when restricted to the matrix representation for which the entries are the generators, is 
given by 

F : SL(2, QxSL(2, a=) -+ SL(2, C)@L(2.C). F(BI x B2) = BIBB:!. - 

Note that F is not injective, since B and -B give the same matrix T. However, it turns 
out to be surjective by definition; in other words F(SL(2. @)xSL(2, C)) = S0(4, C). 

If we take the solution (50) and (51), corresponding to the *-operation on the matrix 
elements of B for the Euclidean metric, one can check that B,-’ = (B,?)* for i = 1. 2. In 
this case, the morphism F reduces to 

F(SU(2)xSU(2)) = S0(4). 

On the other hand, if we take the solution (49) which corresponds to the Minkowski 
metric, the matrix blocks B1 and B2 are not independent, and the morphism F can be 
restricted to a single matrix block: 

F(SL(2, C)) = SO(3, 1). - 

Note that in the classical limit the usual relations are recovered, with the local isomor- 
phisms: 

SL(2, C) X SL(2, C) - SO(4, C), 

SU(2) X SU(2) - SO(4), 

SL(2, C) - SO(3, 1). 

These relations, however, do not generalize easily to the deformed case, since one would 
need a concept similar to that of a simply connected covering space. The fact that the 
deformed groups are not groups, due to the failure of the closure conditions, prevents a 
definition of the concept of continuous transformations that would take one point in space 
to another via a succession of infinitesimal transformations. Consequently, the term simply 
connected loses its usual meaning in deformed geometries. In our case, the closure relation 
is satisfied. The difficulty appears when one tries to define a neighborhood of the identity, 
and over this neighborhood, a homeomorphism to the real space to obtain the concept 
of continuous and differentiable coordinate functions. A manifold structure has yet to be 
defined in deformed geometrical theories. One possibility is contained in Connes work 
[ 121, which relates stability and holomorphic functional calculus with a generalization of 
smoothness. 
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6. Summary and conclusions 

Starting from the natural decomposition of a (pseudo)-Euclidean space into two isotropic 
subspaces V and V’ of equal dimension, we constructed in [9] a general q-deformed Clifford 
algebra as a braided monoidal category of bicovariant bimodules which incorporates, in the 
quantum context, the Cartan theory of spinors. The class of braidings involved in this con- 
struction is of the Hecke type. Because of the nonlinearity and interpretation difficulties 
of the derivation operators in the *-compatible differential calculus resulting from such, or 
more complicated intertwiners, we were led in [5] to consider involutive braids (diagonal 
R-matrices). Although simple, involutive braids are not trivial, and yield the usual inter- 
pretation of differentials as shifts of coordinates with left and right actions of derivation 
operators occurring as two representations of the same abstract operator. Moreover, from 
a mathematical point of view, very interesting purely quantum phenomena appear already 
at the level of such diagonal R-matrices, as for example the possible deviations (from its 
classical counterpart) in the Poincare series of the braided exterior algebra. Hence, observ- 
ing that the same algebra for the generators of the q-Clifford algebra Cl( V, a), associated 
to the isotropic subspace V, can be obtained by considering the involutive braid r, and 
further using the natural functoriality of the contraction ( , ) of V with V’, the remaining 
intertwiners were derived in [9] in order to complete the Clifford algebra Cl(t, W) for the 
total space W = V CD V’ (cf. Eqs. (1 l)-( 14)). Furthermore, requiring that the fundamen- 
tal property of spinor transformations (cf. Eq. (39)) be preserved in the quantum case, a 
non-commutative algebra d was obtained for the coordinates of the underlying (pseudo)- 
Euclidean spaces, given by (15) or, equivalently, by the block-diagonal homomorphism R 
in (17). We then showed that a natural deformation of the classical Cartan approach to con- 
struct spin groups, produces braided spin and Lorentz groups instead of quantum groups. The 
above outline helps to further stress some of the similarities as well as the basic differences 
between some aspects of our approach and others appearing in the literature. Specifically, 
our involutive block-diagonal R-matrices and d algebra for the deformed q-coordinates (in 
four-dimensional space) are essentially the same as those used by Chaichian et al. (cf. [3]) 
and references therein) to study quantum Lorentz and Poincare groups; they differ, on the 
other hand, substantially from the braidings used by Carow-Watamura et al. (cf. [2])in their 
approach to quantum Sl(2, C) and Lorentz groups. Indeed, in the work of the latter authors 
the braid matrix R satisfies a cubic characteristic equation and it is not, therefore, in the 
Hecke class. Also, in the construction of our braided spin groups we use Cartan spinors 
(which are essentially Dirac spinors, modulo a constant complex matrix transformation) to 
express the q-coordinates which generate the A algebra as a tensor product of such spinors. 
The braiding for the spin groups and the algebra of these spinor components are both then 
univocally determined by the requirement of invariance of the spinor bilinear under the 
action of the generators of the Clifford algebra (see Eqs. (37)-(42)). Here again our spinor 
algebra C turns out to be basically the same as the one found in [3], but it is different to the 
one derived in [2]. Furthermore, our spin groups, being braided groups and not quantum 
groups are completely different to the ones considered in all the previously referred papers. 
In fact, if we were to set ly = I then our algebra f3 of spinor transformations would not turn 
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out to be a quantum Hopf algebra, since the axioms of the coproduct would be violated. 
One could still pose the following valid question (and we thank the referee for suggesting 
it): What would happen if we were to take our involutive choice of i matrix and use it 
in the commutation relations for the spinors obtained by Grow-Watamura et al. We shall 
consider this question in what follows, and when referring to expressions in [2] we shall 
consistently mean those in the first paper cited there. To begin with. note that our 8 matrix 
is a non-diagonal 16 x 16 matrix whose entries, derivable from (42) we shall denote by 
iyf, with the pairs of upper and lower indices having the range 11, . . (22, i 1. . 22. In 
order to relate with the notation used in [2], we make the identifications 

:I = (zj, z:, = (cp’, cp’), (96) 

,fI = (;i. zf) = ($I, Q’), (97) 

z.2 = (Z2,<.? - rl ’ -;,-( ‘J2L (98) 

i:2 = (;. r;, = ([I, (2). (99) 

It then follows that the equations labeled as (11.22) (11.23), and (11.32)-(11.35) in ]2] take 
the form 

It is a rather straightforward matter to verify that the above equations satisfy (42), extended 
to apply to different Cartan spinors, provided we set k’ = q = 1 in (loo), with i(p). 
This result is, in particular, in agreement with our formalism where the planes formed 
from semispinors of the same type are classical (the components of a semi-spinor commute 
for underlying spaces of dim = 4). In addition, the commutation relations for the spin 
matrices M and A? given in Eq. (11.36) of the same considered paper agree, when using our 
involutive braid, with the ones we obtained for the quantum spin groups in four-dimensions 
in [5], and express the fact that the entries of each of the spin matrices commute among 
themselves although, of course, they do not commute with the entries of the other matrix. 
Finally, inserting (96)-(99) in (111.24) of [2] for the coordinates, and making use of (42) we 
obtain (15) for the generating algebra of the coordinates, instead of (111.25) (after making 
the identifications A - xl, B - x ” . C - x”, D - x’). For a further discussion of our 
approach to quantum spin groups, and the different resulting commutation relations for the 
spinor components and quantum spin matrices, depending on the dimensions and metrics 
considered for the underlying spaces, we refer the reader to the work cited in 151. 
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